

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-11, November 2019

 37 www.ijeas.org

Abstract— The line of research on the frame problem start in

1980, when formal non-monotonic reasoning arises. Recently,

planning applications are being modeled with answer set

programming. This allows us to represent a given computational

problem through a logical program. Finally, we can use Smodels

or DLV, to find an answer set for this program. Thus, a

stack-type parking planning system is modeled using this

methodology.

Index Terms—Planning, Answer Set Programming, Parking,

Action Language.

I. INTRODUCTION

 Answer set programming is a new paradigm used to

represent a given computational problem through a logic

program whose answer sets correspond to its solution.

Answer set programming has been applied in several areas:

reasoning about actions and changes, planning, configuration,

wire routing, phylogenetic inference, semantic web,

information integration, etc. Research on planning requires

the resolution of two key problems: First, declarative and

elaboration tolerant languages to describe planning domains.

Second, efficient and scalable reasoning algorithms. Action

Description Languages are formal models to represent

knowledge on actions and change [1]. These specifications

are given through declarative assertions that permit to

describe actions and their effects on states. Furthermore, to

express queries on the underlying transition system.

In this paper, we use a novel paradigm based on the plans

generation by reducing this problem to find a satisfactory

interpretation for a set of propositional formulas. Thus,

reducing a planning problem to the problem of finding a

stable model (“answer set”) for a logic problem. One of the

outstanding characteristics of this paradigm is that the

representation of properties of actions is easier when logic

programs are used instead of axiomatizations in classical

logic, in view of the nonmonotonic character of negation as

failure.

DLV and Smodels are two answer set solvers available

today [1], [2]. Both proposals are based on anwer set

programming – ASP. In this paper we show through examples

how action languages like K allow to formalize complex

planning problems involving non-determinism and

incomplete knowledge in a very flexible manner. Language K

 Fernando Zacarias Flores, Computer Science, Benemérita

Universidad Autónoma de Puebla, Puebla, Méxio, 2222295500,

2224530177

Rosalba Cuapa Canto, Faculty of Architecture, Benemérita

Universidad Autónoma de Puebla, Puebla, Mexico, 2222295500

Marquez Rodriguez Beatriz and Angeles López María José,

Computer Science, Benemérita Universidad Autónoma de Puebla, Puebla

adopts a logic programming view where fluents representing

the epistemic state of an agent might be true, false or

undefined in each state.

II. BACKGROUND

First, we select the K language for modeling our proposal

due to its flexibility and its ability to model transitions

between world states and reason about them as a particular

case. Besides, K is closer in spirit to answer set semantics [3]

than to classical logics. Also, we show through examples how

action languages like K allow to formalize complex planning

problems involving non-determinism and incomplete

knowledge in a very flexible manner.

Our case of use in this paper is a stack-type parking planning

system. This type of problem arises in the historic centers of

cities considered World Heritage (as Puebla, México). This

systems type allows to model and automate a real parking.

Planning involves the representation of actions and world

models, reasoning about the effects of actions, and techniques

for efficiently searching the space of possible plans.

A. Basic definitions

In this paradigm, the planning consists of a description of a

world, in which the initial situation is defined, and a desired

situation. The objective is to find a sequence of actions.

(which can change the situations), such that the desired

situation is reached. In addition, not all actions are applicable

in every situation.

Thus, a planning problem is modeled in the following form:

• First, is necessary to define a set of fluents, which

characterize the situations such as initial configuration or final

situation (goal).

• Second, we must define the set of actions, with a

definition of their respective preconditions and effects.

• Third, it is necessary to define the configuration of the

initial situation from which it will start (state 0). It is a set of

fluents describing the initial situation.

• Fourth, we have to define a set of fluents describing the

desired situation or goal.

• Finally, it is necessary to determine the objects involved

in planning system as well as the auxiliary rules necessary for

the proper system functioning.

Right away, using the definition given in [4], [5],

fixed-length solutions to a planning problem should be

calculated as follows:

A planning problem is defined as a pair of a planning

environment PE and a query q, which specifies the goal. A

planning problem is represented as a combination of a

background knowledge, which is a stratified Datalog

program, and a program as described above. For a given

Modeling and planning through answer set

programming

Fernando Zacarias Flores, Rosalba Cuapa Canto, Marquez Rodriguez Beatriz,

Angeles López María José

Modeling and planning through answer set programming

 38 www.ijeas.org

planning problem P and an integer n that defines the plan

length that we want to find, a plan is a sequence a1, …, an such

that there are n + 1 situations S0, …, Sn, such that for each ai,

Si-1 is consistent with ai’s preconditions, and Si is modified

from Si-1 by exactly the effects of ai.

III. CLASSICAL PLANNING PROBLEMS

If In organizations, industrials zones and corporations that

have extensive facilities, also known as campuses, is very

common that people have to find some particular site, for

instance, how go from electronic department to general

library? (see figure 1).

Figure 1. Campus of Autonomous University of Puebla

Thus, it’s important that we understand the general

progression of technology and try to plan for innovation at

each stage of its life cycle. In figure 2 we show the interface of

the mobile application developed (in apple’s iPAD 3 with

retina display) for our campus “Autonomous University of

Puebla”. Next, we can define the domain our problem as

follow:

Figure 2. Main system interface

fluents:

% Fluents represent basic properties of the world

% which can change over time.

% They are comparable to first-order predicates or

% propositional assertions.

start(X2, Y2) requires campus(X2,Y2).

user(X3, Y3) requires campus(X3,Y3).

 position_building(X1,Y1) requires campus(X1,Y1).

position_lake(X4, Y4) requires campus(X4,Y4).

actions:

% Actions represent dynamic momenta of the world, and

 % their execution can % change the state of the world

 % (of knowledge).

 reachTarget.

moveRight costs 1.

 moveLeft costs 1.

 moveUp costs 1.

 moveDown costs 1.

In this case, the actions have a cost (measured in meters). in

this application each movement represents the distance

between the starting point and the point reached.

Each move has costs 1, resulting in plans, where a

minimum number of moves are executed to achieve the plan,

furthermore, user gets a route and this can be recalculated at

any time. The rules following the declarations of actions and

fluents (always) describe the transitions and constraints on the

initial states of the domain (for space reasons we do not

present all code). Finally, the goal section defines the goal to

be reached and the plan length.

always:

% always represents the transitions, these are atomic

% changes, represented by a previous state, a set of

% actions, and a resulting state.

executable reachtarget if position_target(X,Y), user(X,Y).

caused -targetdown after reachtarget.

caused user(X,Y) after reachtarget, user(X,Y).

caused userlive after reachtarget, userlive.

goal: -targetdown, user(E,E), userlive ? (12)

The rule goal, defines the goal (desired target) to be

reached and the plan length.

A. Execution in the campus domain in Dlv
K

In general, assume that the above background knowledge

and planning program are giving in files cu.bk and cu.plan,

respectively. The execution of the command is:

C:\ dlv cu.bk cu.plan –FP –n=1

% Computes the result on server and this is sent to the

% mobile device in no more than 30 segs.

PLAN: moveUp; moveUp; moveUp; moveUp; moveRight;

moveRight; moveDown; moveDown; moveLeft; reachtarget;

COST 9.

IV. PARKING ROBOTIZATION FOR HISTORIC CITIES

Advances in mobility are clearly illustrated by the rapid

development of urbanization in developing countries. The

parking problem has been becoming much more seriously

important in many metropolises, particularly in cities declared

world heritage. With the aim of seeking solutions as to how

the parking system could operate more efficiently by using

new paradigms and new methodologies such as answer set

programming – ASP.

The parking problems urge that the traffic professionals

should seek more efficient solutions as to how the parking

system could be used more efficiently and how parking

planning and management could be improved by using new

paradigms and new methodologies. Recently, action

languages have received considerable attention in solving

planning problems, such as those required in a parking

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-11, November 2019

 39 www.ijeas.org

system. Some relevant action languages such as DlvK and

Smodels have grown lately, due to their expressive power and

efficiency in solving planning problems

A. The advantage of answer set programming

The answer set programming approach to planning is that

the representation of properties of actions is easier when logic

programs are used instead of axiomatizations in classical

logic, coupled with the non-monotonic character of negation

as failure. Some results using Smodels for planning are

reported in [6], [7]. Furthermore, answer set programming is a

novel approach to knowledge representation and reasoning.

ASP enables default reasoning, which is necessary in

commonsense reasoning. It supports event calculus reasoning

and handles some types of event calculus formulas whose

circumscription cannot be computed using predicate

completion. Also, asp include effect constraints, disjunctive

event axioms, and definitions of compound events.

B. Answer Set Solvers

The System DLV compute answer sets for finite programs

without negation as failure in the heads of rules. On the other

hand, Smodels requires additionally that its input program

contain no disjunctions. This limitation can be overcome by

two circumstances:

First, the input language of SMODELS allows us to

express any “exclusive disjunctive rule”, that is, a disjunctive

rule as follow:

L1 ; . . . ; Ln ← Body. accompanied by the constraints

← Li, Lj , Body (1 ≤ i < j ≤ n).

Second, SMODELS allows us to represent the important

disjunctive combination in the head of a rule by enclosing L in

braces: {L}

Answer set programming has found applications to several

practically important computational problems. One of these

problems is planning.

V. MANAGEMENT PLANNING SOLUTIONS FOR TRAFFIC

OPERATION EFFECTIVENESS

The parking problems urge that the traffic professionals

should seek more efficient solutions as to how the parking

system could be used more efficiently, and how parking

planning and management could be improved by using new

technologies and new methodologies. The main reasons for

parking problems in Puebla can be concluded as the disparity

between the supply of parking facilities and parking demand.

The supply of new parking facilities, including sidewalk

parking, has completely congested the historic centers of

many cities and Puebla is not the exception.

The high-density parking configuration - where

inter-vehicle distance is kept to a minimum - improves

considerably land use. In order to make parking planning

strategy be efficient in most situations, instead of processing it

immediately we hold parking queries in a queue for a while

and the number of queries we hold is a controllable parameter.

VI. CASE STUDY FOR PARKING PLANNING

The high-density parking system demands solving the

following tasks: (a) selection of vehicle destination i.e., final

parking position, (b) conflict-free motion planning for vehicle

input and vehicle output and (c) variable vehicle size

compacting. In conflict-free path planning it is ensured that

the trajectories of vehicles are not overlapping in time and

space.

As we mentioned earlier, our methodology is based on the

logic programming paradigm and the front-end know as

action language called "K". This paradigm allows us to model

transitions between the knowledge states. Thus, DLVK is a

knowledge-based planning system. It is based on the

declarative language K, which is similar in spirit to the

logic-based language C, but includes some

logic-programming features (e.g., default negation and strong

negation). K offers the following distinguishing features:

1) nondeterministic effects: actions may have multiple

possible outcomes.

2) handling of incomplete knowledge: for a fluent f, in a

state neither f nor its opposite ¬f may be known.

3) optimistic and secure (conformant) planning:

construction of a “credulous” plan or a “sceptical” plan,

which works in all cases.

4) parallel actions: More than one action may be executed

simultaneously.

The general system functioning is shown in figure 3 and

figure 4. Figure 3 shows the initial state of the parking lot,

where you can see that the requested car is marked by the red

circle.

Figure 3. stack parking in downtown Puebla

Next, figure 4 shows how the objective of delivering the car

indicated outside the parking lot is achieved. Finally, the three

cars (on the left side of figure 4) that are outside the parking

lot must be returned to the parking lot.

Figure 4. attending car request

Modeling and planning through answer set programming

 40 www.ijeas.org

A. Parking System modeling

As we describe in section II, a planning problem is

modeled by defining the following 4 sections: a set of fluents,

a set of actions, define the initial situation and goal and

finally, the objects involved in planning system.

First, we must define the objects involved in the planning

problem as follows:

car(a). car(b). car(c). car(d). car(e). car(f). car(g). car(h).

car(i). car(j). car(k). car(l). car(m). car(n). car(o). car(p).

car(q). car(r). car(s).

true.

location(calle) :- true. % the street is defined as infinite

location(B) :- car(B). % cars occupy a place

Second, we define set of fluents, these allow us to characterize

the world, i.e., predicates describing relevant properties of the

domain of discourse. In this context, fluents necessarily is

either true or false.

fluents: on(B, L) requires car(B), location(L).

 occupied(B) requires location(B).

The fluent "on" allows us to describe where each of the

cars in the parking lot are located. Complementary to the

fluent "on" we define the fluent “occupied”.

Third, define set of actions, the actions allow us to modify the

world through the execution of them. For this reason, it is very

important to consider the causes that the execution of each

action causes on the context where they are executed.

actions: in(B, L) requires car(B),location(L),on(B,L1),

 L1==street.

 out(B, L) requires car(B), location(L), L==street.

As we can see, the action "in" defines the action of putting

a car into the parking lot. To be able to execute the action “in”

it is required to have a car, a place available inside the parking

lot and the car must be on the street. On the other hand, the

action "in" is complementary to the action "out" and this

requires that the following requirements be met: a car, a place

available in the street (this is always true since the street was

declared infinite).

Among the effects caused and considered in our modeling

are the following:

executable in(B,L) if not occupied(B), not

occupied(L),B<>L.

The execution of action "in" requires that both car and

place in the parking lot be free to put it in. In addition,

verifying that both "B" and "L" are not equal guarantees the

application of the action in the correct way.

caused occupied(B) if on(B1,B), car(B).

This action modifies our world by indicating that the place

inside the parking lot was occupied "occupied(B)" and is

characterized by the fluent "on (B1, B)".

caused on(B,L) after in(B,L).

This other cause modifies the configuration of our world

indicating that the car “B” has been parked in the place “L”

inside the parking lot.

executable out(B1,L1) if not occupied(B1).

On the other hand, the execution of the “out” action unlike

the “in” cause does not need to require that the street "L" is

not occupied, because it is considered infinite, so there is no

problem of space, i.e, there is always a place. Here, it is

important to note that the causes generated by the execution of

these actions are similar to those of the previous one, except

that the street is not occupied because it is infinite.

Finally, we define the initial configuration and goal in this

problem as follow:

initially: on(a,fondo). on(b,a). on(c,b). on(d,c). on(e,d).

on(f,fondo). on(g,f). on(h,g). on(i,h). on(j,fondo). on(j,i).

on(k,j). on(l,k). on(m,l). on(n,m). on(o,fondo). on(p,o).

on(q,p). on(r,q). on(s,r).

goal: on(a,fondo), on(c,a), on(d,c), on(e,d),

 on(f,fondo), on(g,f), on(h,g), on(b,calle) ? (7)

Figure 5. Attending a car request in the parking lot

As we can see in Figure 5, the plan obtained by our

proposal is as follows:

PLAN: out(e,calle); out(d,calle); out(c,calle); out(b,calle);

in(c,a); in(d,c); in(e,d);

As mentioned before, the cars are put on the street (which

is infinite) and then put those that will not be delivered and

only leave the one requested by the customer.

It is important to note that our language not only presents a

plan, i.e., you can request more plans and also verify if it is

safe. This is a relevant feature that allows you to have several

alternatives for solving the problem.

VII. CONCLUSION

As you can see, the modeling is simple and clear due to the

expressive power of the K language, i.e., K is very expressive

in terms of planning and reasoning about actions, allowing to

encode even hard planning problems with alternative

preconditions of actions, and nondeterministic actions effects.

In the proposal presented on the pile-type parking, it is

important to note that it can easily be modified to model a

vertical parking, either up or as a basement.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-6, Issue-11, November 2019

 41 www.ijeas.org

With the application developed for our campus and

particularly parking planning application, we could create a

mobile tool that allows those responsible for parking

administration to control customer requests in an automated

way.

On the other hand, first application that determines the

route to get from one point to another is an example of

classical planning. With this, visitors to our campus can go to

any point in a simple way. However, also some limitations

and possibilities for improvements and further research have

developed throughout our work.

Another advantage of this paradigm is the ease that

language gives us to be able to communicate it with other

languages (such as Java) that allow development as a mobile

application.

ACKNOWLEDGMENT

Thank you very much to the Autonomous University of

Puebla for their financial support. This work was supported

by thematic research network PROMEP called

“Combinatorial Algorithms and Pattern Recognition”.

REFERENCES

[1] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S.,

Scarcello, F.: The DLV System for Knowledge Representation and

Reasoning. ACM Transactions on Computational Logic 7(3), 499–562

(Jul 2006).

[2] I. Niemelä and P. Simons. Smodels - an implementation of the stable

model and well-founded semantics for normal logic programs. In

Proceedings of the 4th International Conference on Logic

Programming and Nonmonotonic Reasoning, volume 1265 of Lecture

Notes in Artificial Intelligence, pages 420-429, Dagstuhl, Germany,

July 1997.

[3] M. Gelfond and |V. Lifschitz. Classical negation in logic programs and

disjuctive databases. New generation computing 9, pp. 365-385, 1991.

[4] T. Eiter, W. Faber, N. Leone, G. Pfeifer and A. Polleres. “A Logic

Programming Approach to Knowledge-State Planning: Semantics and

Complexity”. INFSYS Research report 1843-01-11, Technische

Universitat Wien, 2002.

[5] T. Eiter, W. Faber, N. Leone, G. Pfeifer and A. Polleres. “A Logic

Programming Approach to Knowledge-State Planning, II: The DLVK

System”. INFSYS Research report 1843-01-12, Technische

Universitat Wien, 2003.

[6] I. Niemelä, Logic programs with stable model semantics as a constraint

programming paradigm, Ann. Math. Artificial Intelligence 25 (1999)

241–273.

[7] Zeynep Gozen Saribatur, Thomas Eiter: Reactive Policies with

Planning for Action Languages. JELIA 2016: 463-480.

